955 research outputs found

    A Limited In-Flight Evaluation of the Constant Current Loop Strain Measurement Method

    Get PDF
    For many years, the Wheatstone bridge has been used successfully to measure electrical resistance and changes in that resistance. However, the inherent problem of varying lead wire resistance can cause errors when the Wheatstone bridge is used to measure strain in a flight environment. The constant current loop signal-conditioning card was developed to overcome that difficulty. This paper describes a limited evaluation of the constant current loop strain measurement method as used in the F-16XL ship 2 Supersonic Laminar Flow Control flight project. Several identical strain gages were installed in close proximity on a shock fence which was mounted under the left wing of the F- 1 6XL ship 2. Two strain gage bridges were configured using the constant current loop, and two were configured using the Wheatstone bridge circuitry. Flight data comparing the output from the constant current loop configured gages to that of the Wheatstone bridges with respect to signal output, error, and noise are given. Results indicate that the constant current loop strain measurement method enables an increased output, unaffected by lead wire resistance variations, to be obtained from strain gages

    Lobster eye optics for nano-satellite x-ray monitor

    Get PDF
    The Lobster eye design for a grazing incidence X-ray optics provides wide field of view of the order of many degrees, for this reason it would be a convenient approach for the construction of space X-ray monitors. In this paper, we compare previously reported measurements of prototype lobster eye X-ray optics called P-25 with computer simulations and discuss differences between the theoretical end experimentally obtained results. Usability of this prototype lobster eye and manufacturing technology for the nano-satellite mission is assessed. The specific scientific goals are proposed

    Critical dynamics in trapped particle systems

    Get PDF
    We discuss the effects of a trapping space-dependent potential on the critical dynamics of lattice gas models. Scaling arguments provide a dynamic trap-size scaling framework to describe how critical dynamics develops in the large trap-size limit. We present numerical results for the relaxational dynamics of a two-dimensional lattice gas (Ising) model in the presence of a harmonic trap, which support the dynamic trap-size scaling scenario.Comment: 7 page

    On the relationships between tectonics and volcanism in the offshore Capo Vaticano, SE Tyrrhenian Sea, during the Plio-Pleistocene

    Get PDF
    High-resolution bathymetry and a grid of single-channel reflection seismic profiles (Sparker and Chirp) were recently recorded in a sector of the upper slope of Capo Vaticano (CV) promontory (Tyrrhenian coast, W Calabria) where forward and inverse modeling of previously acquired aeromagnetic data highlight the presence of a WNW©\ESE elongated, 20 km long and 3¨C5 km wide, magnetized body extending from sea floor to about 3 km below sea level. Magnetic properties of this body are consistent with those of the medium to highly evolved volcanic rocks of the Aeolian Arc (De Ritis et al., 2010). Forthwith offshore promontory, the bathymetry highlights a complex-shape seamount that develops along a WNW direction, orthogonally interrupted by NE-trending ridges (Loreto et al., 2013), the largest of which shows major- and minor-axes of ca. 11 and 2 km, respectively. Summit elevation is ca. 70 m. Several vented fluids points were imaged on top of the seamount by chirp profiles. The largest of which rises from seafloor up to 6/7 m within water column, assuming the acoustic water velocity of 1500 m/s. Two faults systems associated with extensional faults are mainly observed on seismic profiles. High-angle NW-trending normal faults, SW-dipping, formed along the continental slope connecting the south-west continental shelf of the CV promontory to the Gioia Tauro basin (Pepe et al., 2013). These faults generally have small displacements, up to 40 m, and are sealed by Pleistocene deposits. A NE-trending normal fault, SE-dipping, is also observed on both chirp and sparker profiles. Its length is estimate to be more than 30 km, partially borders the NE-trending ridge intersecting the NW-trending fault. Landward, another NE-trending normal fault affects Pliocene and lower Pleistocene, and is sealed by upper Pleistocene. The described new geophysical data lead to a re-examination of the magnetic anomaly field interpretation. In fact, the revealed NE-trending ridge encounters the CV NW-SE ridge just where the peak value of the Reduced-to-the-Pole magnetic anomaly lies. Therefore, the inherent source body is emplaced where the maximum fracturing occurs. This suggests highly magnetized material crystallized in a vertical conduit that fed a volcanic system, likely fault-controlled, surrounded by the almost not magnetized rocks of the Gioia and the Paola sedimentary basins and of the Arco Calabro Peloritano units

    Cytochalasin B Influences Cytoskeletal Organization and Osteogenic Potential of Human Wharton's Jelly Mesenchymal Stem Cells

    Get PDF
    Among perinatal stem cells of the umbilical cord, human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) are of great interest for cell-based therapy approaches in regenerative medicine, showing some advantages over other MSCs. In fact, hWJ-MSCs, placed between embryonic and adult MSCs, are not tumorigenic and are harvested with few ethical concerns. Furthermore, these cells can be easily cultured in vitro, maintaining both stem properties and a high proliferative rate for several passages, as well as trilineage capacity of differentiation. Recently, it has been demonstrated that cytoskeletal organization influences stem cell biology. Among molecules able to modulate its dynamics, Cytochalasin B (CB), a cyto-permeable mycotoxin, influences actin microfilament polymerization, thus affecting several cell properties, such as the ability of MSCs to differentiate towards a specific commitment. Here, we investigated for the first time the effects of a 24 h-treatment with CB at different concentrations (0.1-3 mu M) on hWJ-MSCs. CB influenced the cytoskeletal organization in a dose-dependent manner, inducing changes in cell number, proliferation, shape, and nanomechanical properties, thus promoting the osteogenic commitment of hWJ-MSCs, as confirmed by the expression analysis of osteogenic/autophagy markers

    Cytochalasin B Influences Cytoskeletal Organization and Osteogenic Potential of Human Wharton’s Jelly Mesenchymal Stem Cells

    Get PDF
    Among perinatal stem cells of the umbilical cord, human Wharton’s jelly mesenchymal stem cells (hWJ-MSCs) are of great interest for cell-based therapy approaches in regenerative medicine, showing some advantages over other MSCs. In fact, hWJ-MSCs, placed between embryonic and adult MSCs, are not tumorigenic and are harvested with few ethical concerns. Furthermore, these cells can be easily cultured in vitro, maintaining both stem properties and a high proliferative rate for several passages, as well as trilineage capacity of differentiation. Recently, it has been demonstrated that cytoskeletal organization influences stem cell biology. Among molecules able to modulate its dynamics, Cytochalasin B (CB), a cyto-permeable mycotoxin, influences actin microfilament polymerization, thus affecting several cell properties, such as the ability of MSCs to differentiate towards a specific commitment. Here, we investigated for the first time the effects of a 24 h-treatment with CB at different concentrations (0.1–3 μM) on hWJ-MSCs. CB influenced the cytoskeletal organization in a dose-dependent manner, inducing changes in cell number, proliferation, shape, and nanomechanical properties, thus promoting the osteogenic commitment of hWJ-MSCs, as confirmed by the expression analysis of osteogenic/autophagy markers

    Strategies to develop radiomics and machine learning models for lung cancer stage and histology prediction using small data samples

    Get PDF
    Predictive models based on radiomics and machine-learning (ML) need large and annotated datasets for training, often difficult to collect. We designed an operative pipeline for model training to exploit data already available to the scientific community. The aim of this work was to explore the capability of radiomic features in predicting tumor histology and stage in patients with non-small cell lung cancer (NSCLC). We analyzed the radiotherapy planning thoracic CT scans of a proprietary sample of 47 subjects (L-RT) and integrated this dataset with a publicly available set of 130 patients from the MAASTRO NSCLC collection (Lung1). We implemented intra- and inter-sample cross-validation strategies (CV) for evaluating the ML predictive model performances with not so large datasets. We carried out two classification tasks: histology classification (3 classes) and overall stage classification (two classes: stage I and II). In the first task, the best performance was obtained by a Random Forest classifier, once the analysis has been restricted to stage I and II tumors of the Lung1 and L-RT merged dataset (AUC = 0.72 ± 0.11). For the overall stage classification, the best results were obtained when training on Lung1 and testing of L-RT dataset (AUC = 0.72 ± 0.04 for Random Forest and AUC = 0.84 ± 0.03 for linear-kernel Support Vector Machine). According to the classification task to be accomplished and to the heterogeneity of the available dataset(s), different CV strategies have to be explored and compared to make a robust assessment of the potential of a predictive model based on radiomics and ML

    Entanglement evolution and generalised hydrodynamics: noninteracting systems

    Get PDF
    The large-scale properties of homogeneous states after quantum quenches in integrable systems have been successfully described by a semiclassical picture of moving quasiparticles. Here we consider the generalisation for the entanglement evolution after an inhomogeneous quench in noninteracting systems in the framework of generalised hydrodynamics. We focus on the protocol where two semi-infinite halves are initially prepared in different states and then joined together, showing that a proper generalisation of the quasiparticle picture leads to exact quantitative predictions. If the system is initially prepared in a quasistationary state, we find that the entanglement entropy is additive and it can be computed by means of generalised hydrodynamics. Conversely, additivity is lost when the initial state is not quasistationary; yet the entanglement entropy in the large-scale limit can be exactly predicted in the quasiparticle picture, provided that the initial state is low entangled
    • …
    corecore